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Molecular Dynamics Calculation of the Viscosities
of Biaxial Nematic Liquid Crystals1

S. Sarman2

We have evaluated the Green-Kubo relations for the viscosities of a biaxial
nematic liquid crystal by performing equilibrium molecular dynamics simula-
tions. The viscosity varies by more than two orders of magnitude depending on
the orientation of the directors relative to the streamlines. The molecules consist
of nine fused Gay-Berne oblates whose axes of revolution are parallel to each
other and perpendicular to the line joining their centers of mass. This gives a
biaxial body, the length-to-width-to-breadth ratio of which is equal to 5:1:0.4.
The numerical evaluation of the Green-Kubo relations for the viscosities is
facilitated by the application of a Gaussian director constraint algorithm that
makes it possible to fix the directors in space. This does not only generate an
inertial director-based frame but also a new equilibrium ensemble. In this
ensemble the Green-Kubo relations for the viscosities are simple linear com-
binations of time correlation function integrals, whereas they are complicated
rational functions in the conventional canonical ensemble.

1. INTRODUCTION

Transport phenomena in liquid crystals are much richer than in isotropic
fluids. The reason for this is that the lower symmetry of the liquid crystals
allows cross-couplings between thermodynamic forces and fluxes that are
forbidden in isotropic fluids. The diffusion coefficients and the thermal con-
ductivities are second-rank tensors with two or three independent com-
ponents depending on whether the symmetry is unaxial or biaxial. The
viscosity is a fourth-rank tensor with 81 independent components in the
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general case. In an isotropic fluid there are three independent components:
the shear viscosity, the volume viscosity, and the vortex viscosity. In
uniaxial systems there are 7 viscosities, and in biaxial systems there are 15.
There are cross-couplings between tensors of different rank and parity. For
example, the symmetric traceless strain rate cross-couples with the antisym-
metric pressure. This gives rise to director alignment phenomena in shear
flows.

The first evaluation of the viscosities of a liquid crystal model system
was done by Baalss and Hess [ 1 ]. They performed a shear-flow simulation
of a perfectly aligned nematic liquid crystal. In order to decrease the com-
putational work they devised a mapping of the liquid crystal onto an
isotropic Lennard-Jones fluid. Equilibrium fluctuation relations for the
viscosities of uniaxial nematic liquid crystals were first derived by Forster
[2] using projector operator techniques. The same relations were later
derived by Sarman and Evans [3] by applying the SLLOD equations of
motion for planar Couette flow and linear response theory. These relations
were evaluated numerically for the Gay-Berne fluid [4]. In a later work we
devised a Gaussian constraint algorithm that made it possible to fix the
director in space [5]. This makes a director-based frame an inertial frame.
One also generates a new equilibrium ensemble. It turns out that the
Green-Kubo relations for the various viscosity coefficients are linear com-
binations of time correlation function integrals in this ensemble, whereas
they are complicated rational functions in the conventional canonical
ensemble. The Green-Kubo relations for the various viscosity coefficients
have recently been generalized to biaxial nematic liquid crystals [6]. In this
work we apply these relations to a model fluid consisting of molecules com-
posed of nine Gay-Berne oblates [7]. Their axes of revolution are parallel
to each other and perpendicular to the line joining their centers of mass.
The length-to-width-to-breadth ratio is 5:1:0.4. This system has been shown
to form biaxial nematic phases at high densities.

2. THEORY

The degree of ordering in a biaxial liquid crystal is described by two
second-rank order parameters [8, 9]:

where 0, o, and u are the Euler angles relative to a laboratory-based coor-
dinate system. The first parameter is the well-known uniaxial order
parameter. It is zero in isotropic phases and finite in uniaxially or biaxially
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symmetric phases. The other parameter is the biaxial order parameter. It is
zero in isotropic and uniaxial phases, and it is finite in biaxial phases. The
order parameters can be defined more clearly if we form symmetric
traceless order tensors based on the various principal molecular axes,

where N is the number of particles, 1 is the unit second-rank tensor, and
si is one of the principal axes uj, vi, or wi, of the molecule (see Fig. 1). This
gives three order tensors, Quv, Quv, and Qww. Using these definitions the
order parameters can be rewritten as

and

where (ex, ey, ez) is the base of a laboratory-based coordinate system. The
parameter Q20O is the largest eigenvalue of the order tensor Qww.

Fig. 1. Planar projections of the molecular model,
(a) The u-axis is perpendicular to the plane of the
paper. (b)The v-axis is perpendicular to the plane of
the paper.
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In order to make sense of these order parameters we have to define the
coordinate system. This can be done by calculating the three order tensors
Quv, Quv, and Qww. Then one computes the largest eigenvalue of each of
them. One defines the eigenvector pertaining to the largest of these eigen-
values, n1, as the x-direction. The eigenvector corresponding to the second
largest eigenvalue, n2, is defined as the j-direction. The z-direction is given
by n3, which is the eigenvector corresponding to the smallest eigenvalue. In
a small system such as a simulation cell, these eigenvectors are independent
within certain limits and they are not strictly orthogoanl. They are con-
stantly diffusing on the unit sphere at angular velocities defined as nu =
nu x nu, u= 1,2, 3. This problem can be solved by applying a Gaussian
constraint algorithm, described below, to fix the directors and keep them
orthogonal.

We are going to use a model system consisting of rigid bodies. The
equations of motion for such a system are

and

where

qi, and pi, are the position and the linear momentum of particle i, M is the
molecular mass, and Fi is the force on particle i due to interactions with
other particles. The parameter a is a Gaussian thermostatting multiplier
that is determined in such a way that the translational kinetic energy
becomes a constant of motion [10]. An important property of this thermo-
stat is that it does not exert any torque on the system. Consequently, it
does not interfere with the director alignment or rotation. In angular space
we employ,

and the Euler equations,
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where

is the inertia tensor, s, equals u,-, v,, or w,, the principal axes of molecule /,
dip, is the molecular angular velocity, Tpi is the torque due to interactions
with other particles, and Ipaa, a. = u,v, w, is the moment of inertia around
the a-axis. Do not confuse the subscript "a" with the thermostatting multi-
plier a. The subscript "p" denotes the principal frame. The Gaussian con-
straint multiplier Au keeps n^ equal to zero and thereby the director orien-
tations are fixed in space. The Xu 's are determined by the requirements that

This is actually six independent equations because there are two indepen-
dent components of each of the nu's and the Xu's. Provided that the initial
values of the nu's are zero, they will remain zero at all times and the direc-
tors will remain fixed. When these constraints are applied, the system will
evolve according to synthetic equations of motion. However, the system
remains in equilibrium and it is possible to prove that the ensemble
averages of most thermodynamic properties and time correlation functions
are unchanged [11].

The a/? element of the pressure tensor is denoted paB. We employ the
Irving-Kirkwood [12] definition of the pressure,

where riy = rj — ri and Fij is the force acting on particle i due to interactions
with particle j.

3. MODEL SYSTEM AND TECHNICAL DETAILS

Our molecules consist of a string of Gay-Berne oblates [8] where the
axes of revolution of the oblates are parallel to each other and per-
pendicular to the line joining their centers of mass. In order to decrease the
number of interactions we replace the Lennard-Jones core by a purely
repulsive 1/V18 core. The site-site interaction potential becomes
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where r1a2B is the distance vector from the center of mass of interaction site
a of molecule 1 to the center of mass of interaction site B of molecule 2,
r1a2B is the unit vector in the direction of r1 x 2p-, r1a2B is the length of rla2B,
and ul and u2 are the unit vectors parallel to the axis of revolution of the
oblates of molecules 1 and 2, respectively. The parameter a0 is the length
of the major axis of the oblate. The strength and range parameters
e(r1a2B, u1, u2) and a(rla2B, ul, u2) are given by

and

The parameter x = ( k 2 — l) / (k 2+ 1), where K is the ratio of the axis of
revolution and the axis perpendicular to the axis of revolution and
X' = (K'1/2 — 1 ) / ( K 1 / 2 + 1), where K' is the ratio of the potential energy min-
ima of the side-to-side and the end-to-end configurations. The depth of the
potential minimum of the configuration where rla2B, u1 and u2 are
mutually perpendicular is given by £0. Note that we use purely repulsive
potentials, so there are no potential minima. However, we keep the values
of K', x', and £0 adjusted for a Lennard-Jones potential when we replace it
by a purely repulsive potential in Eq. (13). The molecules consist of nine
interaction sites. Their axis vectors u, are parallel to each other and per-
pendicular to the line joining the centers of mass. The distance between
the centers of mass of the oblates is <r0/2 (see Fig. 1). The parameters K
and K' have been given the values 0.40 and 0.20, respectively. This gives a
length-to-breadth-to-width ratio of 5:1:0.40. The numerical results in this
work are expressed in units of CTO, M, and a0(M/e0)

1/2. The moment of
inertia around the wi-axis is equal to Q.25Ma^. The moments of inertia
around the u,- and the v,-axes are equal to \.SMa^. The equations of
motion have been integrated by a fourth-order Gear predictor corrector
with a time step of 0.00IT. The cutoff radius beyond which the inter-
action potential and the interaction forces are set equal to zero is
1.5a(fla2B, (u1, u2). Thus the cutoff radius is orientation dependent. The
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expressions for the forces and the torques, which are rather complicated,
are given in Ref. 13. We used cubic boundary conditions. We employed
2025 molecules which together contain 18,225 oblate Gay-Berne interac-
tion sites. The length of the simulation was 9600r. The error bars were
obtained by dividing the simulation into four equal parts and calculating
the standard deviation between the subaverages.

4. CALCULATIONS, RESULTS, AND DISCUSSION

We have evaluated the Miesowicz viscosities or the effective viscosities
of our variant of the Gay-Berne fluid at a reduced density of 0.19 and a
reduced temperature of 1.00. In a planar Couette flow, the relation between
the pressure and the strain rate is

where uB is the velocity in the nB direction that varies in the na direction
in a director-based coordinate system. The ny axis is perpendicular to the
vorticity plane and the na axis is perpendicular to the shear plane (see
Fig. 2). Thus duB /ara is the strain rate, ny, is the effective viscosity, and

Fig. 2. A strain rate Vu = ynxnB is applied. The director nB is parallel
to the streamlines. The velocity varies in the n, direction which is per-
pendicular to the shear plane. The director ny is perpendicular to the
vorticity plane and the plane of the paper. The axis parallel to this
director has been omitted. We denote the effective viscosity ny if
{a ,B , y} is an even permutation of { 1 , 2 , 3 } and n _ ; . for odd per-
mutations.
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<paB> is the aB element of the pressure tensor. This gives six different
viscosities. Each of the three directors can be perpendicular to the vorticity
plane, and either of the two remaining directors can be perpendicular to
the streamlines. If {a, B, y] is an even permutation of {1, 2, 3} the viscosity
is denoted nr and for odd permutations it is denoted n_r The viscosities
can be expressed in terms of time-correlation functions of the various
elements of the pressure tensor [14].

and

We use a shorthand notation for the time correlation functions,

and

where

is the symmetric traceless pressure and
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Table I. The Miesowicz Viscosities at a
Reduced Density of 0.19 and a Reduced

Temperature of 1.00

Viscosity

n1
n-1
12

1-2

n3
n-3

Estimate

9.7±0.3
0.57 ±0.06
0.19 ±0.005

25 ±3
4.9 ±0.3

0.59 ±0.01

is the antisymmetric pressure. The subscript "eq" denotes an equilibrium
ensemble. The subscript "eq: Q" denotes an equilibrium ensemble where the
constraint equation [Eq. (10)] is used to fix the directors. If a = B and
y = S, the correlation functions naBys are independent of whether the direc-
tors are fixed or not, i.e., the normal stress difference correlation functions
are ensemble independent. The TCFIs involving the antisymmetric pressure
are zero if the directors are free. Note that n.aBy.n = yVaB.a because the
pressure tensor is invariant under time reversal.

The various viscosities are given in Table I. We have n_2 > n1 > >n3 »
rl-3xtl-i>rl2- The ratio of the smallest and the largest viscosity coef-
ficients is more than two orders of magnitude. The effective viscosity is

Fig. 3. Approximate orientation of the molecules when n2 is perpendicular
to the vorticity plane. The symbols within square brackets pertain to the
situation when n3 is parallel to the streamlines. The effective viscosity is then
>j_2- The symbols outside the square brackets pertain to the case when n,
is parallel to the streamlines. The effective viscosity is then t;2.



consequently very orientation dependent. It is easy to realize that r/ _2 is the
largest viscosity because this is the effective viscosity when n, and thereby
the u,- axes are parallel to the streamlines and n3 and the w, axes are per-
pendicular to the shear plane (see Fig. 3). This means that it is very hard
for the molecules to pass each other because their broadsides face the
streamlines and hit each other. It is also easy to realize that rj2 is the
smallest viscosity because in this orientation n3 and the w, axes are parallel
to the streamlines and n{ and u, are perpendicular to the shear plane. This
makes it very easy for the molecules to slide past each other, thus decreas-
ing the viscosity.

5. CONCLUSION

We have devised a liquid crystal model potential consisting of nine
oblate Gay-Berne interaction sites. Their axes of revolution are parallel to
each other and perpendicular to the line joining the centers of mass. The
length-to-breath-to-width ratio is 5:1:0.4. We have removed the attractive
part of the Lennard-Jones core of the Gay-Berne potential and replaced it
by a purely repulsive 1//-18 potential in order to reduce the number of inter-
actions. This makes the system faster to simulate. This is useful when one
wants to calculate transport properties which often require very long
simulation runs to converge.

In order to generate an inertial director-based frame we use a director
constraint algorithm that keeps the directors fixed an orthogonal. This con-
straint algorithm also generates a new equilibrium ensemble. Most time-
correlation functions and thermodynamic properties are the same in this
ensemble as in the conventional canonical ensemble. An important exception
is the Green-Kubo relations for the viscosities. They are linear combinations
of time-correlation-function integrals in the fixed-director ensemble, whereas
they are complicated rational functions in the conventional canonical ensemble.

At high densities our liquid crystal model system forms a biaxial
nematic phase. We have used the director-constraint algorithm to evaluate
the Miesowicz viscosities of this phase. They can be regarded as the effec-
tive viscosities when one director is parallel to the streamlines, one director
is perpendicular to the vorticity plane, and the last one is perpendicular to
the shear plane. There are six such viscosities. They were found to be highly
orientation dependent. The largest and the smallest viscosities differed by
more than two orders of magnitude!
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